
Business Rules and BPMN

Modeling Scenario

Let’s say we want to model a process in BPMN and the process induces some
business rules. We will use the example of creating a bill. In order to create the bill, a
discount needs to be computed. The sum of the order and the customer type are the
relevant criteria to compute the discount.

This is a very simple example which will show us where to apply BPMN and where
not to.

The Solution as BPMN 2.0 Diagram

Rule EngineCreate BillBillrequestedComputediscountCreate billBillcreated

Explanation

During modeling, we focus on the process flow. In this example, the process has two
steps. A discount is computed before the bill is created. The result is a very simple

process.

It does not make sense to model the calculation of the discount itself in the BPMN
model (see the example below). For the rules decision tree, for every additional
criteria, the cardinalities will grow exponentially. That is not what we want in a BPMN
model.

Therefore, it makes sense to separate process and business rules.

The Wrong Way to Model It

Create BillCompute 2%discountadd an extra 1%discountcustomertype?BillrequestedSum of

order?customertype?Create billBillcreatedCompute 3%discountCompute

4%discountcustomertype?add an extra 1%discountadd an extra 1%discount1000 –1500500 –

999>2000< 500Type AType AType Aordinaryordinaryordinary

Dependent Instances

Modeling Scenario

Let’s say we want to model a process with concurring instances. We are using a
simple example. If one credit check of a customer is running, we do not want another

credit check for the same customer to be performed at the same time.

The reason could be that the total number of credit checks performed influences the
result of the check.

Let’s assume that we are running a credit check for a customer and we get a second
request for the same customer at the same time.

What all solutions have in common is that every new instance needs to check for

concurring instances on the data level before starting the actual credit check.

Solution with Signal Event

Creditworthiness CheckCheckrequestedcheck forrunninginstances(of samecustomer)running

instancesof same customer?perform creditcheckcredit checkperformedcredit

checkperformedEngineDatabasenoyes

Explanation

The signal event is the easiest and most compact way to model the interaction
between different instances. The problem of the signal is that it functions as a
broadcast and does not address any specific instance. So, strictly speaking, the
customer is ignored and all waiting instances catch it.

Solution with Message Event

Creditworthiness CheckCheckrequestedcheck forrunninginstances(of samecustomer)running

instancesof same customer?perform creditcheckcredit checkperformedwaiting instancesof

same customer?check for waitinginstances (ofsame customer)running

instancefinishedinformwaiting instanceEngineDatabaseEngineDatabasenonoyesyes

Explanation

This solution is a bit more complex, since you need to determine the recipient (a
single instance) of the message. That induces a second data request before the end
of the instance. However, this is the correct way to solve the problem that occurs in

the signal event solution.

Solution with Timer and Loop

Creditworthiness CheckCheckrequestedcheck forrunninginstances(of samecustomer)running

instancesof same customer?perform creditcheckwait sometimecredit

checkperformedEngineDatabasenoyes

Explanation

In this example we do not need any communication between instances. The instance
itself checks periodicity if it can proceed to the credit check. The downside is that this
might cause delays and overhead due to the loop.

Four Eyes Principle

Modeling Scenario

We want to model the following situation using BPMN 2.0. For a request (e.g., a
payment) two approvals of two different people are needed. A Process Engine
should ensure that both approvals are fulfilled before the request is approved. The
manual steps that are performed by the two approvers should also be modeled in the

BPMN diagram. The approval decision is performed using a portal with a Tasklist.

The Use Cases

The use cases for this pattern are numerous. Here are some examples:

 Payment Approval

 Invoice Approval
 Contract Approval

 …

The Solution as BPMN 2.0 Diagram

1st ApproverApprovalrequestedevaluate requestdocument andsubmit

decisiontaskcompletedProcess EngineApprovalrequesteddecide onapproval(1st

stage)approved?requestrejected(1st stage)decide onapproval(2nd

stage)approved?requestrejected(2nd stage)requestapproved2nd

ApproverApprovalrequestedevaluate requestdocument andsubmit

decisiontaskcompletednoyesyesno

Explanation

We use separate pools for the Process Engine, for the 1st Approver and for the 2nd
Approver. This way, we can clearly define who is in control of which process.

In the engine pool, user tasks are used. These user tasks correspond to the tasks

which are shown in the Tasklist of the 1st and the 2nd approver.

The interaction between the user tasks in the engine and between the manual
process of the approvers is modeled using message flows. These message flows
encapsulate the manual steps which the approver needs to perform in order to
complete the user task.

The Tasklist itself is not modeled, in order to reduce complexity.

Variations

Approver as Collapsed Pools

1st Approver2nd ApproverProcess EngineApprovalrequesteddecide onapproval(1st

stage)approved?requestrejected(1st stage)decide onapproval(2nd

stage)approved?requestrejected(2nd stage)requestapprovednoyesyesno

Approver Determination with LDAP

1st ApproverApprovalrequestedevaluate requestdocument andsubmit

decisiontaskcompletedLDAPProcess EngineApprovalrequesteddecide onapproval(1st

stage)approved?requestrejected(1st stage)decide onapproval(2nd

stage)approved?requestrejected(2nd stage)requestapproveddetermine 1stand 2ndapprover2nd

ApproverApprovalrequestedevaluate requestdocument andsubmit

decisiontaskcompletednoyesyesno

Monthly Invoicing

Modeling Scenario

This example explains a very common struggle with structuring BPMN 2.0 diagrams.
Let’s say there is a lawyer who offers legal advice to his customers. The service
works as follows: The customers can ask for legal advice whenever they need it. The
lawyer provides the requested advice and puts the billable hours on the customer’s

time sheet. When the month is over, the lawyer’s accountant determines the billable
hours based on the time sheet and creates the invoice.

This example illustrates a very common modeling scenario. It’s not the steps of the

processes that are difficult, it’s the structure of the diagram.

The Solution as BPMN 2.0 Diagram

LawyerProvide Legal AdviceLegal Advicerequestedprovide legaladviceregister

timeRequesthandledCustomerTime SheetCustomerAccountingMonthly Invoicing1st dayof

monthdeterminebillable hourscreate and sendinvoicemoneyreceivedInvoicesettled14

dayssend reminderjust oneinstance permonthmany instancesper month

Explanation

The most important aspect of the diagram is its structure.

The Provide Legal Advice process is performed many times per month. The Monthly
Invoicing process is only performed once a month. Therefore, these two processes

should be modeled as separate pools.

Of course these two pools are not completely independent from each other. Why?
They work on the same data – the customer’s time sheet. Our ability to model such a
data-related connection is very limited in BPMN. This is due to the fact that BPMN is

focused on control flow rather than on data flow.

However, we can use the data store element to model this connection on the data
level.

The Wrong Way to Model It

LawyerProvide Legal AdviceLegal Advicerequestedprovide legaladviceregister time1st of

nextmonthdeterminebillable hourscreate and sendinvoicemoneyreceivedInvoicesettled14

dayssend reminderCustomer

Explanation why this is wrong

In this example, both processes are mixed into one. This is – at best – a very implicit
way to model it. It would mean that for every provided legal advice an invoice is sent

once the month is over. This way of modeling is wrong in most cases.

Additional Information Required after User Task

Modeling Scenario

Let’s assume we want to model the following scenario: we want to execute a user
task which is performed by a user in a portal. After the user task is completed,
additional information might be required. If that is the case, the process engine
sends an information request either to another user (solution 1) or to a technical
service (solution 2).

Solution 1: Request information from another User

User in PortalUser in PortalProcess Enginesome task forthe useradditional

informationrequired?requestinformation(from user)…noyes

Solution 2: Request information from a technical service

User in PortalSome Technical ServiceProcess Enginesome task forthe useradditional

informationrequired?send informationrequest (technical)informationreceived…noyes

Processing a Batch of Orders from a Marketplace

The Situation

We want to model the following scenario using BPMN 2.0: let’s assume a company
receives orders from different distribution channels. One of these channels is a
marketplace. Within certain intervals of time, the orders from the marketplace are
fetched as a batch. Every order in this batch needs to be validated before being
imported into the ERP System.

The Solution as BPMN 2.0 Diagram

ERP SystemSome MarketplaceImport Orders from Marketplace to ERPEvery

10minutesCollect allorders frommarketplaceProcess OrderNew singleorderCheck

orderdatadatacorrect?Import order toERP systemSingle orderprocessedOrder dataincorrectAll

ordersprocessedfor each singleordernoyes

Explanation

This example shows a very common modeling scenario. We sometimes call it a 1-to-
n problem. One process instance (Import of Orders) results in many single process
instances of another process (ERP System). Typical constructs are multi instance or

loops that start other processes using messages (message flows).

Reassigning User Tasks

Modeling Scenario

This example shows a very common modeling scenario. We sometimes call it a 1-to-
n problem. One process instance (Import of Orders) results in many single process
instances of another process (ERP System). Typical constructs are multi instance or

loops that start other processes using messages (message flows).

Solution 1: Message boundary event and reassignment service

User in PortalProcess Enginedetermineassigneesome user task…assigneeunavailable

Note

This makes sense if the engine calls a service to determine the new assignee.

Solution 2: Message boundary event and reassignment rules

User in PortalProcess Enginedetermineassigneesome user task…assigneeunavailable

Note

This makes sense if the engine calls a rule engine to determine the new assignee.

Solution 3: Message boundary event and implicit reassignment

User in PortalProcess Enginesome user task…assigneeunavailable

Note

This makes sense if the engine determines the new assignee itself, e.g., by using an
expression.

Two Step Escalation

Modeling Scenario

We will use the following example to illustrate how to model a two step escalation
using BPMN 2.0. When we want a pizza, we order one. Sometimes the pizza
delivery screws up and the delivery takes longer than 30 minutes. Then we complain
to the delivery service. After that, we give them another 20 minutes to deliver the
pizza. If they do not make it in time, we give up and cancel our order.

Solution 1: Two Event-Based Gateways

PizzawantedOrder PizzaPizza receivedEat PizzaPizzaeaten30 minutesComplain toDelivery

ServicePizza received20 minutesCancel OrderOrdercancelled

Advantages of this solution

This solution very explicitly shows how the two step escalation is performed. Timers

are modeled separately, followed by their corresponding escalation activities.

Disadvantages of this solution

The event-based gateway is not an intuitive BPMN symbol of the BPMN standard,
experience is required.

Using two event-based gateways makes the model larger and leads to a duplication
of the “Pizza received” message event.

Solution 2: Receive Task with timers attached

PizzawantedOrder PizzaEat PizzaPizzaeatenComplain toDelivery ServiceCancel

OrderOrdercancelledWait for PizzaOrdercomplained50 minutes30 minutes

Advantages of this solution

This model is smaller than the first solution and probably the way most developers
would solve the problem on the engine. Since we use a non-interrupting attached
timer event, this solution is more flexible when it comes to multiple complaints (e.g.,

we want to complain every 5 minutes until 50 minutes are over).

Disadvantages of this solution

The receive task is usually not intuitive for the “business guys”, who would rather use
message receive events for that kind of wait state.

The way that the interrupting and non-interrupting timer collaborate requires

profound understanding of attached events.

Solution 3: One Event-Based Gateway with a generic timer

PizzawantedOrder PizzaPizza receivedEat PizzaPizzaeatentime’s up!Complain toDelivery

ServiceCancel OrderOrdercancelledalreadycomplained?timer is more“generic” in

thisversionyesno

Advantages of this solution

This model is the compact and generic solution to the problem. If it comes to n-step

escalation then you will need this generic approach to avoid huge diagrams.

Disadvantages of this solution

The generic solution is less explicit than the other solutions. We do not see the

actual duration of the timers, as a single timer is used for both durations.

For a fast understanding of the two step escalation, this method of modeling is not
suitable.

BPMN Modeling Styles
Avoid Crossing Flows

Recommendation

This BPMN example is about creating a good layout of process models. The better
the layout, the higher the degree of understanding. That is what we want to achieve

when we create process models.

Try to avoid crossing flows as much as possible. This will increase understanding of
BPMN process models – for both experienced and inexperienced BPMN users.

Of course it is not always possible to entirely avoid this problem. Bear in mind that it
always makes sense to invest some extra time in optimizing the layout in a way that
most crossing flows are eliminated.

The examples below illustrate the problem with an abstract example.

Good Example of Handling Flows

processstartedperform taskonerequiredaction?perform task twoprocessfinishedperform

taskthreeok?yesplan Aplan Bno

Counter-example

processstartedperform taskonerequiredaction?perform task twoprocessfinishedperform

taskthreeok?yesplan Aplan Bno

Naming Conventions

Recommendation

Most important: every BPMN symbol should have a label.

Events should be labeled using object + past participle. Start events should always
be labeled with an indication of the trigger of the process. End events should be
labeled with the end state of the process.

The process (pool) itself should also always be labeled. This label should indicate

the name of the process and the role that is performing it.

Tasks should be labeled using object + verb. This forces the modeling person to
focus on what is really done during the task.

X-OR Gateways should be labeled with a question. The outgoing sequence flows
should be labeled with the possible answers to these questions (conditions).

Good Example of Naming

Check Order DataCustomer ServicesOrderreceivedCheck orderOrdercheckedOrder

datacorrectOrder datacorrect?Order datanot correctyesno

The Generic Version

Process NameRole Performing the ProcessTriggerof processObject + VerbObject + Past

ParticipleFirst end stateafter processis finishedQuestion?Second end stateafter processis

finishedanswer 1answer 2

Counter Example

Order ProcessStartCheckingset status indatabaseEndFailureok

Symmetric Modeling

Recommendation

This BPMN example is about creating a good layout of process models. The better
the layout, the higher the degree of understanding. That is what we want to achieve

when we create process models.

We have determined that symmetric structures increase understanding of BPMN
process models – for both experienced and inexperienced BPMN users.

Good Example of a Symmetric Model

prepare saladhungernoticedchoose recipedesired dish?cook pastaeat mealhungersatisfiedcook

steakdesiredcomponent?Choice:– salad– pasta– steaksteakpastasaladwarmfood

Counter-example

prepare saladhungernoticedchoose recipedesired dish?cook pastaeat mealhungersatisfiedcook

steakdesiredcomponent?Choice:– salad– pasta– steaksteakpastasaladwarmfood

Good Example of a Symmetric Model 2

produce freshproductOrderreceiveduse old productfrom stockOrder valueabove 25.000

€?Process orderOrganizeShipmentPackage goodsShip orderOrderprocessedyesno

Counter-example 2

produce freshproductOrderreceiveduse old productfrom stockOrder valueabove 25.000

€?Process orderOrganizeShipmentPackage goodsShip orderOrderprocessedyesno

Use Equal Task Sizes

Recommendation

We recommend to always use equal task sizes.

The reason is simple. People tend to interpret task sizes although they do not have

any semantics in the BPMN standard.

Some think that bigger tasks are more important than smaller tasks – according to

BPMN that is wrong.

Some think that bigger tasks take more time than smaller tasks – according to BPMN
that is wrong.

You can easily avoid that confusion by using equal task sizes.

Good Example of Equal Task Sizes

1st ApproverApprovalrequestedevaluate requestdocument andsubmit decisiontaskcompleted

Counter-example

1st ApproverApprovalrequestedevaluaterequestdocument and submitdecisiontaskcompleted

	Business Rules and BPMN
	Modeling Scenario
	The Solution as BPMN 2.0 Diagram
	Explanation

	The Wrong Way to Model It

	Dependent Instances
	Modeling Scenario
	Solution with Signal Event
	Explanation

	Solution with Message Event
	Explanation

	Solution with Timer and Loop
	Explanation

	Four Eyes Principle
	Modeling Scenario
	The Use Cases
	The Solution as BPMN 2.0 Diagram
	Explanation

	Variations
	Approver as Collapsed Pools
	Approver Determination with LDAP

	Monthly Invoicing
	Modeling Scenario
	The Solution as BPMN 2.0 Diagram
	Explanation

	The Wrong Way to Model It
	Explanation why this is wrong

	Additional Information Required after User Task
	Modeling Scenario
	Solution 1: Request information from another User
	Solution 2: Request information from a technical service

	Processing a Batch of Orders from a Marketplace
	The Situation
	The Solution as BPMN 2.0 Diagram
	Explanation

	Reassigning User Tasks
	Modeling Scenario
	Solution 1: Message boundary event and reassignment service
	Note

	Solution 2: Message boundary event and reassignment rules
	Note

	Solution 3: Message boundary event and implicit reassignment
	Note

	Two Step Escalation
	Modeling Scenario
	Solution 1: Two Event-Based Gateways
	Advantages of this solution
	Disadvantages of this solution

	Solution 2: Receive Task with timers attached
	Advantages of this solution
	Disadvantages of this solution

	Solution 3: One Event-Based Gateway with a generic timer
	Advantages of this solution
	Disadvantages of this solution

	BPMN Modeling Styles
	Avoid Crossing Flows
	Recommendation
	Good Example of Handling Flows
	Counter-example

	Naming Conventions
	Recommendation
	Good Example of Naming
	The Generic Version
	Counter Example

	Symmetric Modeling
	Recommendation
	Good Example of a Symmetric Model
	Counter-example
	Good Example of a Symmetric Model 2
	Counter-example 2

	Use Equal Task Sizes
	Recommendation
	Good Example of Equal Task Sizes
	Counter-example

